Solubility of Indium-Tin Oxide in simulated lung and gastric fluids: Pathways for human assimilation NERC grant NE/L001896/1

Open data API in a single place

Provided by Government Digital Service

Get early access to Solubility of Indium-Tin Oxide in simulated lung and gastric fluids: Pathways for human assimilation NERC grant NE/L001896/1 API!

Let us know and we will figure it out for you.

Dataset information

Country of origin
Updated
Created
Available languages
English
Keywords
Tin, Indium, NERC_DDC
Quality scoring
90

Dataset description

From being a metal with very limited natural distribution,indium (In) has recently become disseminated throughout the human society. Little is know of how In compounds behave in the natural environment, but recent medical studies link exposure to In compounds to elevated risk of respiratory disorders. Animal tests suggest that exposure may lead to more widespread damage in the body, notably testicular cancer. In this paper, we investigate the solubility of the most widely used In compound, indium-tin oxide (ITO) in simulated lung and gastric fluids in order to better understand the potential pathways for metals to be introduced into the bloodstream. Our results show significant potential for release of In and tin (Sn) in the deep parts of the lungs (artificial lysosomal fluid) and digestive fluids, while the solubility in the upper parts of the lungs (the respiratory tract or tracheobronchial tree, simulated by Gamble's solution) is very low. Our study confirms that ITO is likely to remain as solid particles in the upper parts of the lungs, but that particles are likely to at dissolve in the deep lungs. Considering the prolonged residence time of inhaled particles in the deep lung and the high solubility of ITO in artificial lysosomal fluids, the environment of the deep lungs is likely to provide the major route for assimilation of In and Sn from inhaled ITO nano- and microparticles. Digestion is likely to also lead to assimilation through dissolution in the stomach and interaction with digestive enzymes in the pancreatic juice. However, this route is less likely to lead to substantial assimilation because of the much shorter residence times of particles in the digestive system.
Build on reliable and scalable technology
Revolgy LogoAmazon Web Services LogoGoogle Cloud Logo
FAQ

Frequently Asked Questions

Some basic informations about API Store ®.

Operation and development of APIs are currently fully funded by company Apitalks and its usage is for free.
Yes, you can.
All important information such as time of last update, license and other information are in response of each API call.
In case of major update that would not be compatible with previous version of API, we keep for 30 days both versions so you will have enough time to transfer to new version. We will inform you about the changes in advance by e-mail.

Didn't find the API you need?

Let us know and we will figure it out for you.

API Store provides access to European Open Data via scalable and reliable REST API interface.
Copyright © 2024. Made with ♥ by Apitalks